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Introduction

Interrelation between Graphs and Matrices

• Simple graph.

• Order and Size of a graph.

• Neighbourhood of a vertex.

• Degree of a vertex; Regular Graph.

• Distance and diameter.

• Bipartite Graph.
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• Adjacency Matrix A(G ).

• Matrix of vertex degrees Deg(G ).

• Laplacian Matrix L(G ) = Deg(G )− A(G ).

• Distance Matrix D(G ).
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A(G) =



















0 1 0 0 0

1 0 1 0 1

0 1 0 1 1

0 0 1 0 0

0 1 1 0 0



















L(G) =



















1 −1 0 0 0

−1 3 −1 0 −1

0 −1 3 −1 −1

0 0 −1 1 0

0 −1 −1 0 2



















D(G) =



















0 1 2 3 2

1 0 1 2 1

2 1 0 1 1

3 2 1 0 2

2 1 1 2 0



















v1 v2 v3 v4

v5

G

Figure: A graph G and various associated matrices.
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Introduction

• Applicabilty of distance matrix, viz. Network Analysis, Graph

embedding theory, Chemistry etc.

• Applications in music theory [6], molecular biology [7],

archeology [8], sociology [9] (see [19, 3]).

• Distance matrix as a more powerful structure discriminator

than the adjacency matrix.
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• Transmission of a vertex Trv (G ).

• Matrix of vertex transmissions Tr(G ).

• Distance Laplacian Matrix DL(G ) = Tr(G )− D(G )

(Aouchiche & Hansen, 2013).

• For the graph G shown in Fig. 1,

DL(G ) =



















8 −1 −2 −3 −2

−1 5 −1 −2 −1

−2 −1 5 −1 −1

−3 −2 −1 8 −2

−2 −1 −1 −2 6
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Introduction

• Transmission of a vertex Trv (G ).

• Matrix of vertex transmissions Tr(G ).

• Distance Laplacian Matrix DL(G ) = Tr(G )− D(G )

(Aouchiche & Hansen, 2013).

• For the graph G shown in Fig. 1,

DL(G ) =



















8 −1 −2 −3 −2

−1 5 −1 −2 −1

−2 −1 5 −1 −1

−3 −2 −1 8 −2

−2 −1 −1 −2 6



















.

• For latest results on DL(G ), see [17, 18] and the references

therein.
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Spectrum of a symmetric matrix M

σM =

(

µ1 µ2 · · · µp

m1 m2 · · · mp

)

,

where µ1, µ2, . . . , µp are the distinct eigenvalues of M and

m1,m2, . . . ,mp are the corresponding multiplicities.
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Background

• Integral Graphs (Harary & Schwenk, 1974).

• Which graphs have integral spectra?

• General problem is intractable. These are very rare and

difficult to be found.

• Out of 164,059,830,476 connected graphs on 12 vertices,

there exist exactly 325 integral graphs (Balińska et. al., 2001).

• Have applications in quantum networks allowing perfect state

transfer (Saxena et. al., 2007).
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Adjacency Integral Graphs

• Example-1:- The complete graph Kn, with

σA(Kn) =

(

n − 1 −1

1 n− 1

)

.

• Example-2:- The cocktail party graph CP(n), with

σA(CP(n)) =

(

2n − 2 0 −2

1 n n − 1

)

.

• Example-3:- A complete multipartite graph K n
k
,

n
k
,...,

n
k
having k

equal parts, with σA(K n
k
,

n
k
,...,

n
k
) =

(

n− n
k

0 − n
k

1 n − k k − 1

)

.

• Complements of some disconnected regular graphs, viz.

Kn = nK1, CP(n) = nK2, and K n
k
,

n
k
,...,

n
k
= kK n

k
.
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• If PA(G)(λ) denotes the adjacency characteristic polynomial of

a graph G , then for a r -regular graph of order n,

PA(G)(λ) = (−1)n
λ− n + r + 1

λ+ r + 1
PA(G)(−λ− 1). (2.1)
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Adjacency Integral Graphs

• If PA(G)(λ) denotes the adjacency characteristic polynomial of

a graph G , then for a r -regular graph of order n,

PA(G)(λ) = (−1)n
λ− n + r + 1

λ+ r + 1
PA(G)(−λ− 1). (2.1)

• Hence from (2.1), the complement of an integral regular

graph must be integral, too.
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Adjacency Integral Graphs

• Examples of some class of graphs having only finite number of

integral graphs.

• The adjacency spectrum of Pn consists of the numbers

2 cos ( πi
n+1), where i = 1, 2, . . . , n. Thus, P2 is the only integral

path.

• The eigenvalues of the cycle Cn are of the type 2 cos ( 2πi
n
),

where i = 1, 2, . . . , n. Hence the only integral cycles are C3, C4

and C6.
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Adjacency Integral Graphs

• Research is restricted to cubic graphs, 4-regular graphs,

complete multipartite graphs and circulant graphs [4, 23, 26].

• One more approach is to create integral graphs applying some

graph operations on the already known integral graphs

[24, 10].

• The sum G1 + G2 and the product G1 × G2 has integral

eigenvalues if G1 and G2 both are integral.

• In particular, the bipartite product G × K2 has eigenvalues

±λi , where λi is an eigenvalue of G , and i = 1, 2, . . . , n.
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Adjacency Integral Graphs

• If G is an r -regular graph on n vertices and m edges with

adjacency spectrum (λ1 = r , λ2, . . . , λn), then by [11],

σA(LG ) =

(

2r − 2 λ2 + r − 2 · · · λn + r − 2 −2

1 1 · · · 1 m − n

)

.
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Adjacency Integral Graphs

• If G is an r -regular graph on n vertices and m edges with

adjacency spectrum (λ1 = r , λ2, . . . , λn), then by [11],

σA(LG ) =

(

2r − 2 λ2 + r − 2 · · · λn + r − 2 −2

1 1 · · · 1 m − n

)

.

• Thus, the line graph of an integral graph is also integral.

• Therefore, for each of the above mentioned class of integral

graphs which are regular, we can obtain new classes of

integral graphs by taking their line graphs.
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Adjacency Integral Graphs

• An extensive research on integral graphs were done for trees.

• Unfortunately the majority of these papers were written in

Chinese, as well as their authors were not always aware of the

results of their colleagues of other countries, which led to

some overlapping of results of Chinese and other authors.

• For a beautiful survey on integral graphs the reader can see

[4].
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Comparison with Laplacian Integral Graphs

• The situation in the case of Laplacian matrices is much better

and as noted in [13], Laplacian integral graphs occurs more

frequently.

• If G is r -regular, then L(G ) + A(G ) = rI .

• Hence λ is an eigenvalue of L(G ) iff r − λ is an eigenvalue of

A(G ).

• Thus for regular graphs, the theory of Laplacian integral

graphs coincides with its adjacency counterpart.
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Comparison with Laplacian Integral Graphs

• But, in other cases, there can be remarkable differences.

• For example, out of 112 connected graphs of order 6, only 6

are adjacency integral, and out of them five are regular.

Therefore, they are also Laplacian integral.

• But the sixth one is a tree obtained by joining the centers of

two copies of P3 with a new edge, is not Laplacian integral.

• Whereas there are 37 connected Laplacian integral graphs of

order 6 (see [21]).
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Comparison with Laplacian Integral Graphs

• Another difference involves trees. We have seen that some

interesting work has been done on adjacency integral trees,

whereas the same is not possible for Laplacian integral trees.

• Because, if we consider Laplacian spectrum of a tree, it turns

out that the second smallest Laplacian eigenvalue is less than

1, unless we have a star K1,n−1, where

σL(K1,n−1) =

(

n 1 0

1 n − 2 1

)

.

• Thus, a tree is Laplacian integral if and only if it is a star.
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Comparison with Laplacian Integral Graphs

• Another great difference concerns complements. Since

L(G ) + L(G ) = nI − J, the Laplacian eigenvalues of L(G ) are

λi (G) = n − λn−i (G ), where 1 ≤ i ≤ n − 1, and 0.

• Therefore, G is Laplacian integral iff G is Laplacian integral.

• This is one of the reasons that there are more Laplacian

integral graphs compared to adjacency integral graphs.
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graph is adjacency integral and a line graph of a regular graph

is itself regular, this result carries over to Laplacian case too.
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Comparison with Laplacian Integral Graphs

• As already noted, the line graph of a regular adjacency integral

graph is adjacency integral and a line graph of a regular graph

is itself regular, this result carries over to Laplacian case too.

• Hence the Peterson graph is Laplacian integral since it is the

complement of the line graph of K5.

• The union and join of Laplacian integral graphs are Laplacian

integral. Also the cartesian product of two Laplacian integral

graphs is also Laplacian integral.

• The process of finding new Laplacian integral graphs is still on.
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Distance & Distance Laplacian integral graphs

• Very few results w.r.t. distance matrix till date.

• Some graph operations, such as the Cartesian product and the

strong product may be used to generate new integral graphs

from the given ones [14].

• Recently in [20], the joined union (which can be seen as

generalization of join and lexicographic product) is used to

create distance Laplacian integral graphs.

• Motivated by these, we consider two class of graph operations.
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Distance & Distance Laplacian integral graphs

Definition 1

(Indulal & Vijaykumar, 2006)

Let G be a graph with vertex set V (G ) = {v1, v2, . . . , vn}. Take

another copy of G with the vertices labelled by {u1, u2, . . . , un}

where ui corresponds to vi for each i . Make ui adjacent to all the

vertices in N(vi ) in G , for each i . The resulting graph, denoted by

D2G , is called the double graph of G .
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Distance & Distance Laplacian integral graphs

v1 v2

v3v4

u1 u2

u3u4

D2C4

Figure: The double graph D2C4 of cycle on 4 vertices.
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Distance & Distance Laplacian integral graphs

• The distance spectrum of the double graph of G was derived

from the distance spectrum of G ([15])

Theorem 2

(Indulal & Gutman, 2008). Let G be a graph with distance

eigenvalues µ1, µ2, . . . , µn, then σD(D2G ) =

(

2(µi + 1) −2

1 n

)

,

where i = 1, 2, . . . , n.
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Distance & Distance Laplacian integral graphs

• The distance spectrum of the double graph of G was derived

from the distance spectrum of G ([15])

Theorem 2

(Indulal & Gutman, 2008). Let G be a graph with distance

eigenvalues µ1, µ2, . . . , µn, then σD(D2G ) =

(

2(µi + 1) −2

1 n

)

,

where i = 1, 2, . . . , n.

• Therefore, if G is distance integral, then so does the double

graph of G .
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Distance & Distance Laplacian integral graphs

Lemma 3

(Davis, 1979; Nath & Paul, 2014)

Let A =

[

A0 A1

A1 A0

]

be a 2× 2 block symmetric matrix. Then the

eigenvalues of A are those of A0 + A1 together with those of

A0 − A1.
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The double graph of G

Theorem 4

Let µ1, µ2, . . . , µn be the distance Laplacian eigenvalues of G . If

Tri is the transmission of the i -th vertex, then

σDL(D2G ) =

(

2µi 2Tri + 4

1 1

)

, i = 1, 2, . . . , n.

Proof Skip Proof
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The double graph of G

Proof.

By definition of D2G , we have

dD2G (vi , vj) = dG (vi , vj)

dD2G (vi , ui ) = 2

dD2G (vi , uj) = dG (vi , vj)

dD2G (vj , ui ) = dG (vj , vi )

dD2G (ui , uj) = dG (vi , vj)



Introduction Background Main Result Conclusions References

The double graph of G

Hence a suitable ordering of vertices yields the distance Laplacian

matrix of D2G of the form

DL(D2G )

=

[

2(Tr(G ) + I ) 0

0 2(Tr(G ) + I )

]

−

[

D(G ) D(G ) + 2I

D(G ) + 2I D(G )

]

=

[

DL(G ) + Tr(G ) + 2I −D(G )− 2I

−D(G )− 2I DL(G ) + Tr(G ) + 2I

]

.

Thus the theorem follows from Lemma 3.
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The double graph of G

Example 5

We have σDL(C4) =

(

6 4 0

2 1 1

)

and Tri = 4, ∀i . For the double

graph of C4 (shown in Fig. 2), it can be seen that

σDL(D2C4) =

(

12 8 0

6 1 1

)

, as stated in Theorem 4.
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The double graph of G

Example 5

We have σDL(C4) =

(

6 4 0

2 1 1

)

and Tri = 4, ∀i . For the double

graph of C4 (shown in Fig. 2), it can be seen that

σDL(D2C4) =

(

12 8 0

6 1 1

)

, as stated in Theorem 4.

• Since the transmission Tri is always an integer, by Theorem 4,

given a distance Laplacian integral graph G , the double graph

of G is also distance Laplacian integral.
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The extended double cover graph

Definition 6

(Alon, 1986)

Let G be a graph on the vertex set {v1, v2, . . . , vn}. Define a

bipartite graph H with V (H) = {v1, v2, . . . , vn, u1, u2, . . . , un} in

which vi is adjacent to ui for each i = 1, 2, . . . , n and vi is adjacent

to uj if vi is adjacent to vj in G . The graph H is known as the

extended double cover graph (EDC-graph) of G .
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The extended double cover graph

v1 v2

EDC− graph of C4

v3

u1 u2 u3

v4

u4

Figure: The EDC− graph of cycle on 4 vertices.
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The EDC-graph of regular graphs of diameter 2

• The distance spectrum of the EDC -graph of a regular graph

of diameter 2 has been obtained in [15].

Theorem 7

(Indulal & Gutman, 2008). Let G be an r-regular graph of

diameter 2 of order n with adjacency

eigenvalues r = λ1, λ2, λ3, . . . , λn. Then

σD(EDC−graph of G ) =

(

5n − 2r − 4 2r − n −2(λi + 2) 2λi

1 1 1 1

)

,

where i = 2, 3, . . . , n.
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The EDC-graph of regular graphs of diameter 2

• The distance spectrum of the EDC -graph of a regular graph

of diameter 2 has been obtained in [15].

Theorem 7

(Indulal & Gutman, 2008). Let G be an r-regular graph of

diameter 2 of order n with adjacency

eigenvalues r = λ1, λ2, λ3, . . . , λn. Then

σD(EDC−graph of G ) =

(

5n − 2r − 4 2r − n −2(λi + 2) 2λi

1 1 1 1

)

,

where i = 2, 3, . . . , n.

• Thus if G is an r -regular adjacency integral graph of diameter

2, then the EDC-graph of G is distance integral.
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The EDC-graph of regular graphs of diameter 2

Theorem 8

Let G be an r-regular graph on n vertices with diameter 2, and

r = λ1, λ2, . . . , λn be its adjacency eigenvalues. Then for

i = 2, 3, . . . , n,

σDL(EDC − graph of G )

=

(

0 5n − 2r + 2λi 6n − 4r − 4 5n − 2r − 4− 2λi

1 1 1 1

)

.

Proof Skip Proof
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Proof.

Let A and A be the adjacency matrices of G and G , respectively.

Then by the definition of EDC− graph, its distance Laplacian

matrix can be written as

DL(EDC − graph of G)

=

[

(5n− 2r − 2)I 0

0 (5n− 2r − 2)I

]

−

[

2(J − I ) A+ 3A+ I

A+ 3A+ I 2(J − I )

]

=

[

(5n− 2r)I − 2J −3J + 2A+ 2I

−3J + 2A+ 2I (5n− 2r)I − 2J

]

,
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since A = J − I − A. The theorem now follows from Lemma 3, and

the fact that the all one vector 1n is the eigenvector of A

corresponding to the eigenvalue r and the eigenvector of J

corresponding to the eigenvalue n.
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The EDC-graph of regular graphs of diameter 2

Example 9

Since C4 is a 2-regular graph of diameter 2, we have

σA(C4) =

(

2 0 −2

1 2 1

)

. For the EDC-graph of C4 (shown in

Fig. 3), it can be seen that

σDL(EDC − graph of C4) =

(

16 12 0

3 4 1

)

,

as stated in Theorem 8.

Thus, if G is an r -regular adjacency integral graph of diameter 2,

then by Theorem 8, the EDC-graph of G is distance Laplacian

integral.
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• Noted some important results on adjacency and Laplacian

integral graphs.
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Conclusions

• Noted some important results on adjacency and Laplacian

integral graphs.

• Used two graph operations to create distance and distance

Laplacian integral graphs.

• From Theorem 4, we see that by repeated application of the

graph operation (double graph) one may obtain numerous

infinite families of distance Laplacian integral graphs.
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• Compared to Theorem 4, the scope of application of

Theorem 8 is limited.
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Conclusions

• Compared to Theorem 4, the scope of application of

Theorem 8 is limited.

• We cannot repeat the graph operation (EDC) to obtain

infinite families of distance Laplacian integral graphs (since

the EDC-graph may not be a graph of diameter 2).

• But we can surely apply the operation at least once, to create

a distance Laplacian integral graph from a given one.
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Thank you!

Queries & suggestions please
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